1/39

ROeS 2025 Conference, 34th Conference of the Austro-Swiss Region (ROeS)

STRATOS-TG2 project P 6: Contrasting Bayesian and frequentist model building for descriptive research questions—a paired-design experiment

Mariana Nold, Aliaksandr Hubin, Michael Kammer, Georg Heinze

Date: September 16, 2025

Introduction

STRATOS Initiative and TG2

STRATOS Initiative (STRengthening Analytical Thinking for Observational Studies) is a global collaboration of statistical experts, aiming to provide accessible and evidence-based guidance for the design and analysis of observational studies. https://stratos-initiative.org

STRATOS TG2 is one of several topic groups within the initiative. https://stratostg2.github.io/

Main Aim TG2: Develop guidance for variable selection and functional form specification in multivariable analyzes.

Thanks to all TG2 members for supporting this project.

Bayesian vs. Frequentist Thinking

Traditional Distinctions:

- Frequentist: Probability as long-run frequency; parameters are fixed.
- Bayesian: Probability as belief; parameters are random variables.

Established Perspectives:

- Both represent distinct statistical paradigms frequentism dominated much of the 20th century, while Bayesian approaches have gained momentum since the 1990s, driven by computational advances.
- Disciplinary and national traditions shape terminology and usage.

Diversity Within the Frequentist Paradigm

A Non-Monolithic Paradigm - Selected aspects of internal diversity:

- Interpretation: Disputes over p-values (usage and interpretation) and evolving use of confidence intervals instead of p-values (e.g., "New Statistics" [2]).
- Modeling Practice: Debates on the selection of variables and functional forms → Divergent views on variable selection and model-building criteria [19].
- Philosophical Variants: From strict sampling-based frequentism to likelihoodist approaches using LR tests.

The Evolving Meaning of "Bayesian"

- As Fienberg (2006) [5] notes in his seminal paper When Did Bayesian Inference Become "Bayesian", early 20th-century statisticians used Bayes' theorem without referring to Bayesian methods.
- Fienberg's historical analysis shows that the meaning of Bayesian has evolved and continues to change in disciplinary, national, and epistemological contexts.
- Recent computational advances have shifted Bayesian practice towards prediction, with priors increasingly used to stabilize inference [8] → Bayesian rationality is evolving in important ways at the moment [13].

Two Developments Motivating our Project

 Paradigm Diversity: The frequentist—Bayesian divide is increasingly viewed as a spectrum. Both paradigms encompass diverse traditions shaped by historical and institutional contexts [5, 14, 20].

Critique of Modeling Practice:

- Many practices reflect the True Model Myth, often lacking solid theoretical grounding and clear research questions [1].
- Cross-disciplinary critiques highlight deficits in scientific rigor and transparency within common modeling practices [10, 9, 21].

Guiding Questions: What distinguishes frequentist and Bayesian reasoning today? How can modeling practice be improved in light of these critiques?

Focus on Descriptive Research Questions

<u>Definition</u> (following [1, 8]): A descriptive research question summarizes statistical patterns that reflect **changes between units** - differences between individuals or observational units - without invoking interventions or counterfactuals. In contrast, a causal research question addresses **changes within units**, to ask how the outcome for the same unit would differ under alternative interventions.

- Descriptive: Differences observed between subjects/units.
- Causal: hypothetical contrasts within subjects/units.
- Describe patterns, not causal mechanisms.
- May inform, but not prove, causality.

Statistical Thinking as a Spectrum: Blurring Boundaries

- As Lin (2024) [14] notes, the frequentist—Bayesian divide is overly simplistic and masks a spectrum of nuanced positions.
- This perspective acknowledges that methodological choices often combine elements from both traditions, depending on context, goals, and epistemological stance.
- Bayesian and frequentist analyses can converge in practice, as shown in Inchausti's textbook [12] Statistical Modeling With R: A Dual Frequentist and Bayesian Approach for Life Scientists.
- \Rightarrow This raises the question of robustness: When do Bayesian and frequentist approaches yield converging substantive insights, and how is reliable inference defined within each paradigm?

Robustness Across Paradigms: Inspiration from Nuijten (2022)

Nuijten's Retrospective 4-Step Check [16]: A minimal-resource framework to evaluate the robustness of published findings.

- 1. **Internal Consistency:** Are results coherent?
- 2. **Reanalysis:** Do they replicate under the original strategy?
- 3. **Alternative Strategies:** Are conclusions stable across analytical choices?
- 4. **Replication:** Do the findings hold in a new sample?
- \Rightarrow Inspired by Nuijten's logic, we adapt this idea to a proactive setting with a focus on Step 3, the alternative strategy.

Project Research Question

How can analysis plans be designed to integrate frequentist and
Bayesian perspectives embedding robustness checks proactively,
to improve modeling practices for descriptive research questions?

- Promotes proactive robustness as a means to encourage methodological openness and improve planning quality.
- Embeds critical reflection from the dialogue of the cross-paradigm.

Methodological Approach

- Paired design with four statisticians: Each locates themselves between Bayesian and frequentist thinking (Lin, 2024), with a leaning toward one side.
- Cross-paradigm robustness check: Each participant applies
 a robustness check to a counterpart's analysis plan from the
 opposite paradigm.
- Four case studies: Each study addresses a specific statistical focus and allows the comparison of paradigm-specific modeling strategies. Simplifying assumptions help avoid overlapping challenges.

Study Design: Seven Phases of the Analytical Workflow

- Phase 0: Data Cleaning
- Phase 1: Draft Statistical Analysis Plan (SAP)
 - **IDA:** Initial Data Analysis (IDA) [11] \rightarrow Refinement based
 - on IDA
- Phase 2: Refine SAP based on discussion within paradigm
- **Phase 3:** Robustness check by opposite paradigm
- Phase 4: Execute main analysis and robustness analyses
- Phase 5: Compare approaches and document insights
- Phase 6: Interpret results and reflect on implications

Case study I: School-belonging Case

Study

Empirical Application based on PISA 2018 data from Austria

- Outcome variable: Binary indicator for school withdrawal (1 = yes), operationalized as a very low sense of belonging to school.
- Focal predictors:
 - (1) Bullying victim status (yes/no)
 - (2) School-level truancy (scale 1–4, based on proportion of students with attendance problems per school)
 - → Combined into 8 distinct profiles.

Substantive Research Questions:

- How does school belonging vary across bullying/truancy profiles?
- What role do background variables play in understanding differences between these focal groups, especially considering their potentially uneven distribution across profiles?

Background Variables: Finn's Engagement Model

Theoretical Framing, Finn (1989) [6]

Background variables were selected from PISA data based on Finn's engagement model, capturing the risks and protection dimensions within the school alienation cycle.

Core Dimensions

- Participation: Presence and involvement
- Identification: Sense of connection and belonging
- Success: Experience of achievement and competence

Withdrawal Cycle

```
    \text{Low Participation} \leftrightarrow \text{Low Identification} \rightarrow \text{Withdrawal} \rightarrow \text{Negative Outcomes} \\ \rightarrow \text{Low Participation} \leftrightarrow \text{Low Identification}
```

Variable Structure: Linking Theory and Data

Background Variables (BV)

- Conceptually based on Finn's theory → Represent protective or risk factors in the alienation process.
- Scaled such that higher values indicate lower risk (\(\ = \) protective).
- ⇒ When theoretically aligned, BV act as predictive indicators:
 Higher values are expected to reduce withdrawal behavior

Scaling Approach (Hypothesized Pattern):

- BVs scaled into quartiles (25%, 50%, 75%)
- If consistent with Finn's framework, higher quartiles should indicate stronger protection and thus lower risk of withdrawal
- Empirical consistency to be checked

Data Preparation and Modeling Framework

Methodological Boundaries (for simplicity, to avoid overlapping challenges)

 Dataset treated as random sample and missing data handled via single imputation

Initial Data Analysis (IDA)

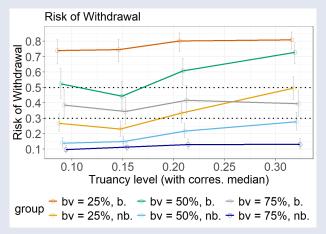
• Two focal variables plus **15 background variables**: \rightarrow 4 binary, 11 continuous (7 individual-v. standardized and 4 school-level-v. are proportions)

First Modeling Step: Parsimonious model to summarize data structure

 Multilevel logistic regression with random intercept (schools as clusters) and interaction between focal variables.

Between-Units Student Profiles: Bullying × School Truancy Level

Bullying emerges as a distinguishing factor, while truancy plays a limited role. The findings are broadly consistent with the Finn theory. Scaled BV (\uparrow = low risk) \rightarrow 25%, 50%, 75% quantiles.)



Step 2: Background Model – Are encoded assumptions and information sufficient for prediction?

Induction within Deduction (Gelman & Shalizi, 2011)

"Statistical models are tools for inductive reasoning within a deductive framework."

- Models encode assumptions → Derive model based on assumptions (deduction)
- Predictions tested against data → generate predictions (induction) and compare to observed data
- Failed predictions expose limits → learn from mismatches (falsification)

Core question: Are encoded assumptions and information sufficient to predict the outcome distribution in relevant regions?

18/39

Models as Filters - Diagnostics in Practice

Learning based on what the model cannot predict

A model is <u>useful</u> when this filtering enables a meaningful insight into the research question.

- Learning arises from mismatches between model predictions and observed data - this is where insight lives.
- Diagnostics are important <u>purpose-built tools</u>, crafted to test specific model assumptions relevant to the research question.
- By comparing models, we uncover their blind spots; these limitations inform a deeper understanding.

Background Model and Diagnostic Strategy

- Theory-driven background model (withdrawal circle) includes only BVs.
- Focal predictors Bull (binary) and Truancy level (categorical) - are intentionally excluded.
- Key question: Can the background model predict outcome distributions across focal groups - despite being blind to them?
- The distribution of theoretically derived BVs across focal groups is analytically informative, as it supports understanding of group-specific dynamics and the plausibility of theoretical explanations based on statistical patterns.
- Model fit assessed via randomized quantile residuals.

Basic Idea: Randomized Quantile Residuals

- Residuals are calculated using the cumulative distribution function (CDF) of the fitted model.
- If the model fits well, the observed values behave like random draws, and the residuals appear uniform.
- These are transformed to normality using the probability integral transform (PIT):

$$r_{Q,i} = \Phi^{-1}\left(F(y_i \mid \mathsf{model})\right)$$

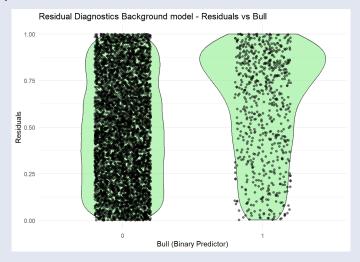
• For discrete outcomes, small random noise ("jittering") ensures smooth residuals.

Sources: Dunn (1996) et al. [3], Feng et al. (2017) [4], Inchausti (2022) [12].

Residual Visualization and Tilt Signature [15]

Tilt signature: Residuals cluster in the upper half of the uniform scale.

ightarrow Systematic underestimation: Withdrawal is higher than predicted for victims, and slightly lower for non-victims.



Diagnostic Insight: Limits of the Background Model

Diagnostic Insight

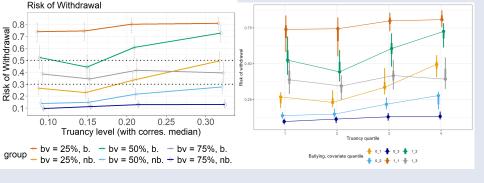
The background model successfully captures predictive patterns within the outcome region of Truancy level, but fails to represent structures associated with Bull (bullying).

- The residuals for Bull show a clear tilt, indicating systematic underestimation.
- No such pattern for Truancy level its signal is well captured (not shown).
- This contrast highlights the **limits** of the background model: it cannot account for all regions of the outcome distribution.
- These findings reveal empirically grounded patterns that invite substantive interpretation: they do not prove causality, but may inform causal reasoning and guide further inquiry.

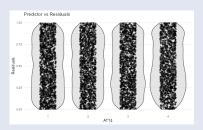
Frequentist Robustness Check I

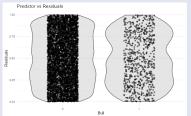
- Aim: replicate Bayesian analysis as close as possible
- Estimand: Probability of high sense of belonging for representative students at different levels of school truancy and bullying experience
- Data and variables: same as Bayesian analysis
- Methods: same as Bayesian analysis Multilevel logistic regression with random intercepts for schools, focal variables including interaction, covariates
 - Background model without focal variables as comparator
 - Bootstrap for uncertainty quantification of primary estimand
- Diagnostics and performance: same as Bayesian analysis -Randomized Quantile Residuals
 - Also calibration and c-index, assess normality of random effect
- Model comparison: Likelihood ratio test

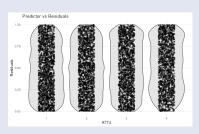
Frequentist Robustness Check II



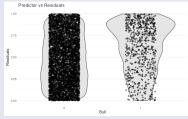
Frequentist Robustness Check III







26 / 39



Conclusion Frequentist vs Bayesian Randomized Quantile Residuals

- Goal: Both approaches evaluate model fit by comparing observed data with model-implied distributions.
- Construction:
 - Frequentist: Uses fixed parameter estimates.
 - Bayesian: Averages over posterior samples to account for uncertainty.
- Interpretation:
 - Frequentist: Residuals reflect fit under point estimates.
 - Bayesian: Residuals reflect fit across the posterior.
- Randomization: Both apply uniform randomization to handle discrete outcomes.
- Diagnostics: Similar plots (e.g., residual vs predictor, QQ plots) are used in both cases.

Consistency Between Bayesian and Frequentist Approaches

- Residual Diagnostics: Randomized quantile residuals are nearly identical across Bayesian and frequentist models, indicating strong agreement.
- Interpretation Frameworks: Bayesian methods express uncertainty more explicitly, yet key diagnostics remain stable across paradigms.
- Computational Demands: Bayesian estimation can be resource-intensive. In this case study, sampling from the posterior caused storage problems, underscoring the need for efficient implementation.
- **Scope of Results:** Shown residual plots represent only a subset. Full diagnostics are available in the extended analysis.
- **Robustness of Conclusions:** Substantive findings are consistent between approaches.

Conclusion

Statistical Pluralism in Practice

Methodological Diversity with Empirical Convergence

Froslie (2019) [7] describes statistics as a **language for reasoning** with data, not just a set of tools. Statistics as theory constitutes an autonomous justification of its own methodology: it establishes a unifying and binding framework [18]. Each statistical school provides its own justification and methodological framework, which sets it apart; yet, their conclusions mainly converge in our case-studies, similar to examples in the textbook of Inchausty [12].

- Each statistical school offers different methodological justifications and specific strengths.
- When aligned through a coherent analysis plan, these approaches often lead to similar conclusions.

Frequentism and the Semantic Predicament

- Semantic inconsistency manifests in two interrelated forms:
 - → Terminological ambiguity (polysemy) similar terms with differing meanings across fields (e.g., psychology vs. biometrics); statistically valid, yet prone to misunderstanding.
 - → Conceptual vagueness (erosion) terms such as 'control variable' or 'p-value' lose precision and are used without clear reasoning, weakening the study foundations [see e.g. 21, 17].
- Frequentist methods, widely used by nonexperts, foster conceptual vagueness → a semantic predicament where vague terms persist.
- STRATOS counters this by promoting clarity and education-based reasoning in statistical practice.

Proactive Robustness: Revealing Hidden Biases

- External critique is essential: It uncovers overinterpretation and blind spots within statistical schools.
- Early robustness checks: Joint planning between traditions fosters transparency and trustworthiness.
- Confronting perspectives sharpens reasoning: It reveals hidden assumptions and encourages reflection.
- **Comparing modeling assumptions:** Direct contrasts deepen understanding between paradigms.
- Plurality of methodological views: Debating what counts as justified methodology helps draw clearer boundaries to less rigorous approaches.

Key Insight: Robustness becomes a lens for epistemological reflection - not just a technical safeguard.

Significance and Implications

Why This Matters

- Embedding critical perspectives before analysis challenges dominant conventions.
- Opens space for rethinking modeling norms and exploring new research trajectories.
- Encourages reflexivity in statistical practice moving beyond routine application.

Broader Impact

- Enhances the robustness of findings.
- Promotes methodological pluralism and innovation.
- Supports a more critical and creative research culture across paradigms.

Future directions for STRATOS - TG2P6

- In light of the alleged blurring boundaries between Bayesian and frequentist approaches, are we truly united by more than what divides us?
- Should we more clearly describe what these boundaries are, namely, the different justifications for Bayesian and frequentist methodologies, and what exactly is being blurred?
- Do we need additional case studies? If so, what kind of case studies would best illuminate convergence, divergence, or intersection?

That concludes our presentation. We welcome your questions and comments.

References

- [1] John B Carlin and Margarita Moreno-Betancur. "On the uses and abuses of regression models: a call for reform of statistical practice and teaching". In: Statistics in Medicine 44.13-14 (2025), e10244.
- [2] Geof Cumming and Robert Calin-Jageman. Introduction to the new statistics: Estimation, open science, and beyond. Routledge, 2024.
- [3] Peter K. Dunn and Gordon K. Smyth. "Randomized Quantile Residuals". In: Journal of Computational and Graphical Statistics 5.3 (1996), pp. 236–244. ISSN: 10618600. DOI: 10.2307/1390802.

[4] Cindy Xin Feng, Alireza Sadeghpour, and Longhai Li. "Randomized Quantile Residuals: an Omnibus Model Diagnostic Tool with Unified Reference Distribution".

In: 2017. URL:
https://api.semanticscholar.org/CorpusID:126143700.

- [5] Stephen E Fienberg. "When did Bayesian inference become" Bayesian"?" In: Bayesian Analysis (2006).
- [6] Jeremy D. Finn. "Withdrawing From School". In: Review of Educational Research 59.2 (1989), pp. 117–142. DOI: 10.3102/00346543059002117. eprint: https://doi.org/10.3102/00346543059002117. URL: https://doi.org/10.3102/00346543059002117.
- [7] Kathrine Frey Frøslie and Jo Røislien. "Sprechen sie statistik?" In: *Tidsskrift for Den norske legeforening* (2019).

- [8] Andrew Gelman, Jennifer Hill, and Aki Vehtari. Regression and other stories. Analytical Methods for Social Research. Cambridge, UK: Cambridge University Press, 2021. ISBN: 1107676517.
- [9] Andrew Gelman and Eric Loken. "The Statistical Crisis in Science". In: American Scientist 102.6 (2014), p. 460. ISSN: 0003-0996. DOI: 10.1511/2014.111.460.
- [10] Georg Heinze et al. "Phases of methodological research in biostatistics—building the evidence base for new methods". In: Biometrical Journal 66.1 (2024), p. 2200222.
- [11] Georg Heinze et al. "Regression without regrets-initial data analysis is a prerequisite for multivariable regression". In: BMC Medical Research Methodology 24.1 (2024), p. 178.

[12] Pablo Inchausti. Statistical Modeling With R: a dual frequentist and Bayesian approach for life scientists.

Oxford University Press, Nov. 2022. ISBN: 9780192859013. DOI: 10.1093/oso/9780192859013.001.0001. URL: https://doi.org/10.1093/oso/9780192859013.001.0001.

- [13] Johannes Lenhard. "A transformation of Bayesian statistics: computation, prediction, and rationality". In: Studies in History and Philosophy of Science 92 (2022), pp. 144–151.
- [14] Hanti Lin. "To be a frequentist or Bayesian? Five positions in a spectrum". In: Harvard Data Science Review 6.3 (2024).

- [15] Alan BH Nguyen et al. "LOO-PIT: A sensitive posterior test". In: Journal of Cosmology and Astroparticle Physics 2025.01 (2025), p. 008.
- [16] Michèle B Nuijten. "Assessing and improving robustness of psychological research findings in four steps". In: Avoiding questionable research practices in applied psychology. Springer, 2022, pp. 379–400.
- [17] Don van Ravenzwaaij et al. "Perspectives on scientific error". In: Royal Society Open Science 10 (July 2023). DOI: 10.1098/rsos.230448.
- [18] Bernhard Rüger. Test-und Schätztheorie: Band I: Grundlagen. R. Oldenbourg Verlag, 1999.

- [19] Willi Sauerbrei et al. "State of the art in selection of variables and functional forms in multivariable analysis—outstanding issues". In: Diagnostic and prognostic research 4.1 (2020), p. 3.
- [20] Jordi Vallverdú. Bayesians versus frequentists: a philosophical debate on statistical reasoning. Springer, 2015.
- [21] Ben Van Calster et al. "Methodology over metrics: current scientific standards are a disservice to patients and society". In: Journal of Clinical Epidemiology 138 (2021), pp. 219–226. ISSN: 0895-4356. DOI: https://doi.org/10.1016/j.jclinepi.2021.05.018. URL: https://www.sciencedirect.com/science/article/pii/S0895435621001700.